Population Health Surveillance and Forecasting for Wildfire Smoke

Jiayun Angela Yao
University of British Columbia

BC Lung Air Quality and Health Workshop
February 6, 2019
Public health surveillance is the continuous, systematic collection, analysis and interpretation of health-related data needed for the planning, implementation, and evaluation of public health practice.

- Early warning system
- Evidence-based decision making
- Intervention evaluation

https://www.who.int/topics/public_health_surveillance/en/
Surveillance data for environmental health

- Environmental data
- Health data
- Vulnerability assessment
Environmental data for wildfire smoke exposure

- Air monitoring network
- Satellite images
- Model (near real time and forecast)
- Ensemble tools
Health data for wildfire smoke

What to consider?
• Spatial temporal resolution
• Availability
• Sensitivity to changes in smoke level
Temporal resolution

Daily averaged PM2.5 (μg/m³)

Sub-daily exposure: limited evidence

Short term (~days) exposure: sufficient evidence

Chronic exposure: little evidence
Data Availability

• Population covered
• Data quality
 • Missing data?
 • Standardized diagnosis?
 • Standardized data entry?
• Rate of update

Physician visits data:

- Date of visit
- Date of bill claim
- Date of data retrieval
Sensitivity to changes in smoke level

- Severity of the health outcome
- Outcomes in susceptible populations
Asthma related outcomes
Vulnerability assessment – susceptible population

- Age >65 or <5
- Pre-existing conditions

- Lower socio-economic status
- Pregnant women (unborn children)

Most supported by existing evidence

Less consistent but emerging evidence
Community health-vulnerability Index (USEPA)

Rappold AG, Reyes J, Pouliot G, Cascio WE, Diaz-Sanchez D. Community vulnerability to health impacts of wildland fire smoke exposure. Environmental science & technology. 2017 Jun 2;51(12):6674-82.
Climate-related health hazard vulnerability assessment

- Vancouver Coastal Health and Fraser Health Region

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Sensitivity</th>
<th>Adaptive capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>% days with PM$_{2.5}$>25 during severe fire seasons</td>
<td>Pre-existing diseases</td>
<td>Immigrant status</td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>Visible minority</td>
</tr>
<tr>
<td></td>
<td>General self-rated health</td>
<td>Indigenous status</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Education</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Income</td>
</tr>
</tbody>
</table>
Wildfire Smoke Vulnerability
Metro Vancouver
Multiple data sources and data types can be hard to access and evaluate!

- Air monitor
- Smoke model
- Smoke forecast
- Fire information
- Baseline population asthma rate
- Population demographic data
- Asthma physician visits
- Asthma medication dispensations
- Satellite image
We need one system to integrate and visualize these information!
US CDC online tool

National Environmental Public Health Tracking Network (http://ephtracking.cdc.gov)

- Real time wildfire smoke predictions and forecasts from NOAA/National Weather Service (NWS)
- CDC's Social Vulnerability Index
- Static baseline health information
- **Potential health data: vital statistics, Medicare, hospital care (HCUP)**
British Columbia Asthma Prediction System (BCAPS)

- Observed air quality (Module 1)
- Observed health indicators (Module 3)
- Forecasted air quality (Module 2)
- Forecasted health response (Module 4)

Daily report
Provincial maps of forecasted PM$_{2.5}$ for today and tomorrow

Random forest model with
1. Lag1 PM$_{2.5}$ monitor
2. Lag1 remotely sensed smoke and fire
3. Lag 1 meteorology
4. FireWork smoke forecasts
HSDA report

The bottom panel:

- Observed PM$_{2.5}$ (M1)
- Range of PM$_{2.5}$ forecasts within the HSDA (M2)
HSDA report

The top panel:
- Observed counts with anomaly indicators (M3)
- Counts predicted using maximum of the PM$_{2.5}$ forecasts range (M4)
Areas to improve for surveillance

- Change from static reports to interactive platforms to suit needs of different users

https://dangerouspenguin.github.io/
Areas to improve for surveillance

- Data with higher temporal resolution
Need for long-term surveillance

More exposed

Time passes

Compare health outcomes

Less exposed
Contributors

BCCDC
• Dr Sarah Henderson
• Kathleen McLean

UBC
• Dr Michael Brauer
• Jessica Yu
• Xuan Zhao
• Kaitlin Castellani
Thank you!

angelayao3@gmail.com
Wildfire Smoke Sensitivity Index
Metro Vancouver
2018 Case Studies

* Note: The Nisga’a Health Council is an independant health authority

Prepared By: BCStats
July, 2008
Observed above expected

Predicted above expected

Predicted observed