Rapid Impact of Effective Treatment on Mtb Transmission:
Mechanisms and Practical Implications

Edward A. Nardell, MD
Brigham & Women’s Hospital, Division of Global Health Equity
Associate Professor, Harvard Medical School
& Harvard School of Public Health
Partners In Health, Boston, USA

Questions Addressed:

1. When do pulmonary TB patients on effective therapy become non-infectious?
2. When can TB patients be taken out of isolation and sent home?
3. What is the mechanism by which effective treatment rapidly stops transmission?

G.A.

- 29 yo HCW (peds resident) presents to BWH ER after one episode of hemoptysis (while on call)
- No cough, no fever or night sweats, no weight loss, no decreased appetite, no malaise.
 - Just a funny feeling in the back of the throat, and expectorated a 1 tablespoon of red blood
 - On exam: no fever, normal BP, HR, RR and O2 sat
 - One additional similar episode of hemoptysis in ER
G.A. 12/6/2013

Additional history

- Other sources of bleeding:
 - No sinus problems
 - Recent dental work – no bleeding
- Negative TST (PPD) until 2 years ago when she converted to pos senior year in medical school
 - 2 other 4th year medical students converted
 - Travelled to Africa (6 mos) and Central America in medical school and volunteered in homeless shelter in Nashville
 - Normal CXR at that time – did not receive INH
- Born in Latin America, immigrated at age 4
- Uncomplicated pregnancy – delivered a healthy baby 7 mos ago – baby well
Non-hospital course

- **CT scan for PE** in the EW - neg
- Asked pulmonary to consider bronchoscopy for hemoptysis
 - Pulm: initially declined, but patient was anxious to know due to professional contact with sick children, etc
- **Bronch** performed the morning of presentation:
 - LUL clot, bilateral blood seen, no active source identified.

Non-hospital course continued

- Post bronch, patient started on **standard TB Rx**:
 - 2 mos IRPE, 4 mos IR, pending NAAT, culture and drug susceptibility tests
- **Patient discharged that same day against the wishes of DPH Boston.**
 - DPH was “concerned” about 7 mos old child.
 - PHN could not visit her home before Monday – insisted that we keep her in the hospital till visited.
 - Patient asked to stay out of work the following week (was on research block for 2 wks)
Rationale for discharge

1. TB suspects/cases need not be admitted to the hospital, so there is no required duration of hospitalization
 – Exceptions for medical and social reasons
2. Household contacts have already been exposed weeks or months before diagnosis
 – Baby was acting normally
3. Patient was not coughing – cough strongly associated with infectiousness
4. Patients started on therapy rapidly become non-infectious – how rapidly?

Effects of Chemotherapy on Transmission

- Gunnels et al (ARRD 1974):
 - studied contacts of 155 patients sent home after 1 month of treatment in hospital
 - 69 Culture neg.
 - 86 Culture pos
 - 52 Smer and culture positive.

- No difference in infection rate among 284 contacts of culture positive cases versus 216 contacts of culture negative contacts.
Effects of Chemotherapy on Transmission

 - Sputum smear and culture positivity correlate with transmission before but not on therapy.
 - Evidence that smear and culture positive TB patients on effective therapy do not infect close contacts.

Effects of Chemotherapy on Transmission (Rouillon)

- "There is an ever-increasing amount of evidence in support of the idea that abolition of the patient’s infectiousness - a different matter from ‘cure,’ which takes months, and from negative results of bacteriological examinations, direct and culture, which may take weeks – is very probably obtained after less than 2 weeks of treatment."

- "These facts seem to indicate very rapid and powerful action by the drugs on infectivity…"

Outcome

- Bronch lavage AFB smear and NAAT negative for TB
 - Sputum – AFB negative (one specimen discarded – in improper container!)
 - Lavage culture ultimately positive – pan sensitive TB
- No further hemoptysis
- Completed therapy uneventfully
- Husband and Baby remained well and TST neg
Commentary

• Unusual presentation for TB
 – Hemoptysis usually a later feature of cavitary TB where necrosis erodes blood vessel
 • Exsanguination was the most feared cause of death in the pre-chemotherapy era
• RUL granuloma may have eroded into a small vessel, heralding TB before any other symptoms
• Patients on effective therapy are not infectious – almost immediately!
 – One what basis do I say that?

How Rapidly Does Treatment Stop Transmission?
Wells/Riley Experimental TB Ward 1960-62

• Riley RL. What nobody needs to know about airborne infection. (How It Really Happened) AJRCCM 2001; 163:7-8.

Wells/Riley Ward – Results (Exp 2)
• 2.6 GPs infected per month
 – strict criteria
• Relative infectivity of patients*:
 – Susceptible TB
 • 61 Untreated (29 GPs) 100%
 • 29 Treated (1 GP) 2
 – Drug-resistant TB
 • 6 Untreated (14 GPs) 28
 • 11 Treated (6 GPs) 5

*all smear positive patients, relative to the amount of time on the ward
Smear pos - started therapy the same time they entered the ward - not 2 weeks before.
Rapid impact of effective chemotherapy on transmission of drug-resistant tuberculosis

Airborne Infection Research Facility

Airborne Infection - Interventions

- Aerobiology
- Environmental stressors
- Temperature and humidity
- Oxygen and radiation
- Treatment
 - Drug resistance
- Host resistance
- Immunization
- Resp Protection
 - Masks
- Source control
 - Patients

Pathogenesis
- Treatment of latent infection

Isolation
- Dilution (ventilation)
- Filtration
- UVGI
- Locking

Controls
- Admin
- Isolation
- Source control
- Host resistance

Source strength
- Drug resistance
- Virulence
- Viability
- Viability

Drug resistance
- Oxygen and radiation
- Temperature and humidity
- Virulence

Host resistance
- Isolation
- Source control
- Dilution (ventilation)
- Filtration
- UVGI
- Locking
TB Spread in General medical Clinics, hospitals
- unsuspected case
- Unsuspected DR

Unsuspected, untreated TB
Active case finding, Lima Hospital
13 of 40 TB cases (33%) detected/yr – UNSUSPECTED!
(EMerg Inf Dis 2001; 7:123-7)

What is the mechanism for the rapid effect of treatment on transmission?
1. Not explained by smear and culture conversion
2. Likey related to the combine stress responses
 - to aerosolization and to treatment
3. Gene expression mediated?
4. Other phenotypic responses to environment?

Mtb studied in culture and in animal models – not at all in air – *aerobiology of Mtb virtually unknown.*
Mycobacterium tuberculosis phenotypes in patient aerosols

Andrew Bell, Caroline Williams, Natalie Garton, Amin Bakir, Ali Yavari Ramsheh and Mike Barer
mrb19@le.ac.uk
(in collaboration with the AIR team, South Africa and Boston)
Dept of Infection Immunity and Inflammation
University of Leicester UK
(funded by BMGF, E. Nardell, PI)

www.le.ac.uk

Cough Aerosol Sampling
Kevin Fennelly, MD

Each patient will perform 2 cough sampling sessions over 2 successive days
Cough Aerosol Assays and Analyses

For each patient (n=50) and each sampling session (n=100):
- Andersen Sampler
- BioSampler with PBS/PANTA
- BioSampler with GTC
- Expectorated sputum

- Colony counts
- CFU/culture
- MPN counts
- RPF dependency assays
- MGIT Culture
- MGIT assay
- Transcriptional assays qRT-PCR
- Lipid body analysis (raw sputum)
- Transcriptional analysis qRT-PCR (samples in GTC medium)
- MGIT Culture
- Full genome sequences awaited for re-mapping
- Analysis on the Rockhopper 2.02 platform

From Patients in the AIR facility, Pretoria
- Seven pre-treatment aerosol samples from 3 patients in the cough aerosol sampling system (CASS).
- All Andersen samples positive for colony forming units with 10 min sampling (5-534 CFU)
- Liquid impactor samples taken for RNA analysis (lower air volume sampled than Andersen)
- 5 aerosols +ve for Mtb 16S rRNA (10^2.5 copies)

RNA from 4 aerosol/sputum pairs sent for RNAseq
- Illumina NextSeq analysis (Vertis), approx 10^7 reads per sample
- Good coverage in one aerosol/sputum pair
- Fair coverage in remaining 3 aerosols
- Reads mapped to Mtb H37Rv genome
- Full genome sequences awaited for re-mapping
- Analysis on the Rockhopper 2.02 platform
Differentially expressed (DE) transcripts (Aerosol vs. sputum)
- 111 DE: 52 UP, 59 DOWN
- 95 Protein encoding transcripts
- UP examples
 - cytochrome D ubiquinol oxidase subunit II CydB
 - ribonuclease VapC47
 - mycofactocin system protein MfB
 - ESX-1 secretion-associated protein EspA
- Remarkable consistency across 4 aerosol samples (2 patients sampled on 2 consecutive days)

Transcription factor associated regulatory patterns
- DosR significantly upregulated in both sputum and aerosol vs aerobic growth in vitro
- Mce2R genes significantly up in aerosol vs sputum
- Many additional regulatory patterns to be explored

RNA-seq reads from aerosol, VS. sputum and in vitro Mtb growth

Integrated Genome Viewer visualisation of RNA-Seq profiles of aerosol and sputum samples from a patient sampled by CASS, aligned to the Mtb H37Rv genome and compared to mid exponential growth. The profile demonstrates that genome-wide coverage has been obtained from a ten minute cough sample, that differential expression is readily detected and that both untranslated transcripts and potential novel RNAs were detected.
Summary of DE RNAs Aerosol vs. Sputum (q<0.01)

Mapping of 16S reads to compare microbiomes in aerosol and sputum

- Genus level assignments only
- Aerosol dominated by mycobacterium (>95%)
- Sputum – major Firmicute (streptococcal) signal and mycobacterial signal much lower than in aerosol

Interpretation

- Note that aerosol samples were RNA stabilised within seconds of expectoration
- Strong indications that aerosol is not simply a sample of sputum
- The Mtb present in aerosol show significantly different gene expression from those in contemporaneously sampled sputum
- The accompanying microbiomes in aerosol and sputum are also very distinct
Summary

- TB Patients need not be hospitalized at all – unless there are extenuating circumstances
- Effective treatment rapidly stops transmission
 - Known cases on Rx NOT the source of hospital transmission
 - Focus on active case finding (cough, rapid molecular diagnosis, and effective treatment)
- Environmental controls in general medical areas and waiting rooms important for unsuspected cases
- Aerosolization changes Mtb gene expression - stress response.
- Effective drugs also cause gene expression stress responses in vitro
- Other stress responses NOT associated with gene expression